Advanced Search

Submit Manuscript

Volume 23, No 10, Oct 2013

ISSN: 1001-0602 
EISSN: 1748-7838 2018 
impact factor 17.848* 
(Clarivate Analytics, 2019)

Volume 23 Issue 10, October 2013: 1163-1171

ORIGINAL ARTICLES

Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system

Albert W Cheng1,2,*, Haoyi Wang1,*, Hui Yang1, Linyu Shi1, Yarden Katz1,3, Thorold W Theunissen1, Sudharshan Rangarajan1, Chikdu S Shivalila1,4, Daniel B Dadon1,4 and Rudolf Jaenisch1,4

1Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
2Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Correspondence: Rudolf Jaenisch, Tel: +1-617-258-5186(jaenisch@wi.mit.edu)

Technologies allowing for specific regulation of endogenous genes are valuable for the study of gene functions and have great potential in therapeutics. We created the CRISPR-on system, a two-component transcriptional activator consisting of a nuclease-dead Cas9 (dCas9) protein fused with a transcriptional activation domain and single guide RNAs (sgRNAs) with complementary sequence to gene promoters. We demonstrate that CRISPR-on can efficiently activate exogenous reporter genes in both human and mouse cells in a tunable manner. In addition, we show that robust reporter gene activation in vivo can be achieved by injecting the system components into mouse zygotes. Furthermore, we show that CRISPR-on can activate the endogenous IL1RN, SOX2, and OCT4 genes. The most efficient gene activation was achieved by clusters of 3-4 sgRNAs binding to the proximal promoters, suggesting their synergistic action in gene induction. Significantly, when sgRNAs targeting multiple genes were simultaneously introduced into cells, robust multiplexed endogenous gene activation was achieved. Genome-wide expression profiling demonstrated high specificity of the system.


10.1038/cr.2013.122

FULL TEXT | PDF

Browse 2799